Bone brittleness varies with genetic background in A/J and C57BL/6J inbred mice.
نویسندگان
چکیده
The contribution of genetic and environmental factors to variations in bone quality are understood poorly. We tested whether bone brittleness varies with genetic background using the A/J and C57BL/6J inbred mouse strains. Whole bone four-point bending tests revealed a 70% decrease in postyield deflection of A/J femurs compared with C57BL/6J, indicating that A/J femurs failed in a significantly more brittle manner. Cyclic loading studies indicated that A/J femurs accumulated damage differently than C57BL/6J femurs, consistent with their increased brittleness. Differences in matrix composition also were observed between the two mouse strains. A/J femurs had a 4.5% increase in ash content and an 11.8% decrease in collagen content. Interestingly, a reciprocal relationship was observed between femoral geometry and material stiffness; this relationship may have contributed to the brittle phenotype of A/J femurs. A/J femurs are more slender than those of C57BL/6J femurs; however, their 47% smaller moment of inertia appeared to be compensated by an increased tissue stiffness at the expense of altered tissue damageability. Importantly, these differences in whole bone mechanical properties between A/J and C57BL/6J femurs could not have been predicted from bone mass or density measures alone. The results indicated that bone brittleness is a genetically influenced trait and that it is associated with genetically determined differences in whole bone architecture, bone matrix composition, and mechanisms of cyclical damage accumulation.
منابع مشابه
Genetic variation in mouse femoral tissue-level mineral content underlies differences in whole bone mechanical properties.
A/J mice, as compared to C57BL/6J (B6) mice, have a significantly greater total femoral mineral (ash) content which correlates with an increased femoral stiffness (resistance to deformation), but also with an increased brittleness (catastrophic failure). To determine if this whole bone variation in mineral content is indicative of significant mineral and/or matrix variation at the tissue level,...
متن کاملEffect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice
Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...
متن کاملAge-dependent variations of cancellous bone in response to ovariectomy in C57BL/6J mice.
The ovariectomized (OVX) mouse model has been widely accepted to be suitable for the study of postmenopausal osteoporosis. However, whether C57BL/6J mice, a commonly used genetic background mouse strain, is an appropriate model for postmenopausal osteoporosis remains controversial. The present study investigated the effect of the OVX model on alterations in bone density and microarchitecture in...
متن کاملKaryotype of NIH, C57BL/6 and Razi strains of laboratory mice (Mus musculus)
The laboratory mouse is recognized as the pre-eminent model for genetic research. Awareness of chromosomal patterns of experimental animals increases their value for a variety of different fields of study. We aimed to study mitotic chromosome preparations from NIH, C57BL/6 and Razi strains of mice, which are outbred, inbred and partially inbred laboratory mice respectively. Bone marrow cells we...
متن کاملGenetic differences among C57BL/6 substrains.
The C57BL/6 mouse is the most well-known inbred mouse strain, and has been widely used as a genetic background for congenic and mutant mice. A number of C57BL/6 substrains have been derived from the C57BL/6 founder line and are reported to differ in several phenotypes. There are several major sources of C57BL/6 substrains for the biomedical research community. The importance of their genetic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 16 10 شماره
صفحات -
تاریخ انتشار 2001